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1 Abstract 

This project describes a novel method for pedestrian re
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and location dependent and those that depend on the person's identity. As opposed to most previous 

work, which deals with re-identifying a person at any new location, we focus on a solution for the 

natural setup of surveillance systems in which the cameras are specific and stationary, and exploit the 

fact that for a pair of specific cameras the transfer domain is limited. We argue that the transformation 

function is a multi-valued mapping and address this in the proposed method.

the ability to learn the transfer associated with two cameras from rather small sets of inter

example pairs lies in utilizing the more abundant negative examples. We experiment with the VIPeR 

dataset and with a video provide

2 Introduction 

The re-identification problem has received increasing attention in the last five to six years, especially 

due to its important role in surveillance systems. It is desirable that computer vision systems will be able 

to keep track of people after they have l

of the next, even when these fields of view do not overlap. 

We make the distinction between the general re

identify a person in any new lo

goal is to provide a solution for a specific site. In this work we tackle the second goal. Given a pair of 

stationary cameras, A  and B, capturing two non

people captured by those two cameras, our objective is to recognize correspondence between the 

appearance of a never-before-seen person in camera 

in the examples in Figure 1, learning the domain of the camera

informative. Each camera is associated with a limited variety of backgrounds, illumin

and sometimes human poses. 

(a) VIPeR examples
Figure 1: Examples from the VIPeR dataset and the video from Rafael: five people captured by one camera (top row) and 

another camera (second row). We see that the background, illumination, resolution and sometimes pose are camera 

dependent. 
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the ability to learn the transfer associated with two cameras from rather small sets of inter
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We propose an algorithm that exploits these properties and that is based on the observation that the 

transfer between two cameras is a multi-valued mapping which can be estimated using implicit function 

learning. The algorithm models the implicit transfer function by training a binary classifier with 

concatenations of pairs of vectors, the first describing an instance associated with camera A, and the 

second describing an instance associated with camera B. The objective is to be able to distinguish 

between positive pairs – pairs of instances capturing the same person with two different cameras, and 

negative pairs – pairs of instances whose members are associated with two different people and two 

different cameras. We consider the optimal number of negative examples to use for training and show 

that the key to the ability to learn the transfer associated with two cameras from rather small sets of 

inter-camera example pairs lies in utilizing the more abundant negative examples. 

We denote our algorithm ICT, short for Implicit Camera Transfer. We experiment using the VIPeR [1] 

dataset and using a video provided by Rafael as a part of our cooperation with the Magnet-Vulcan 

Consortium1. A new state-of-the-art performance is achieved on VIPeR. 

2.1 Related Work 

Object re-identification is a challenge that has been receiving increasing attention. Person, or 

pedestrian, re-identification is a special focus of recent research, mainly due to its important role in 

surveillance systems.  

Some recent methods focus on learning characteristics of the similarity between feature vectors 

describing two appearances of the same person against that of two vectors describing instances of 

different people. These methods usually use the absolute distance as the characteristic to be learned. 

The ELF method [2] models the distribution of the feature-wise difference between the instances using 

Ada-boost for feature selection and classification. In [3] it is observed that what matters is not the 

similarity itself, but the relative similarity: positive pairs should be ranked higher than negative pairs. 

Therefore, the goal is to weigh the features in a way that will maximize the difference between absolute 

differences of negative pairs and absolute differences of positive pairs. In our method, as opposed to the 

similarity-based methods, we do not make the assumption that greater similarity implies `same'. 

Some methods start with a pre-process for separating the people from the background and some also 

attempt to divide the person into a few semantic parts. These high-level processes may lead to mistakes 

that will then be dragged into the re-identification training and classification stages. In our work we use 

bounding boxes surrounding the people. This is possible as our algorithm is implicitly trained to filter out 

the background by recognizing the background associated with each camera as person-independent. As 

such, it allows items carried by the people (e.g., bags) to be used as cues without additional explicit 

analysis. Moreover, the semantic high level analysis requires processing time that is unlikely to be 

implemented for real-time performance, while the methods proposed here can be used for real-time re-

identification. 

                                                           
1
 The website of the Magnet-Vulcan Consortium is located at http://www.vulcan.org.il/.  



3 Implicitly Learning Inter-Camera Transfer 

In this section we describe the ICT algorithm. Given that there are two differently located stationary 

cameras A and B, covering two non-overlapping regions of a site, our algorithm is trained to find 

correspondence between people captured by the two cameras. Let ��,��   describe the k'th appearance of 

a person with identity � captured by camera �, and let ��,	
  describe the �'th appearance of a person with 

identity � captured by camera 
. Given a pair ���,�� , ��,	
�, the goal is to distinguish between positive pairs 

with the same identity (� = �), and negative pairs (� ≠ �). Our algorithm trains a binary classifier using 

concatenations of such positive and negative pairs of vectors coming from training data. Then it 

classifies new such pairs by querying the classifier on their concatenations. A detailed description of the 

algorithm follows. 

3.1 The ICT Algorithm 

3.1.1 The Training Stage 

The Input:  

• A set ���,�� �� = 1, . . . , �; � = 1, . . . , ���� of vectors describing instances of � people captured by 

camera �.  

• A set ���,�
 �� = 1, . . . �; � = 1, . . . , ��
� of vectors describing instances of the same � people 

captured by camera B.  

That is, for each person and each camera we may be provided with a few descriptor vectors, each 

associated with his appearance in a different video frame. If tracking is not available, but only a single 

image per camera per person, then the sets above would be defined in a degenerate form with 

��� = ��
 = 1. 

Let [�|| ] = (�", . . . , �#,  ", . . . ,  $) denote the concatenation of vectors � = (�", . . . , �#) and 

 = ( ", . . . ,  $). The training input for the binary classifier is:  

• A set of positive examples {[��,�� ||��,	
] | � ∈ {1, . . . , �}, � ∈ {1, . . . , ���}, � ∈ {1, . . . , ��
} }. 

• A set of negative examples {[��,�� ||��,	
] | � ≠ �, �, � ∈ {1, . . . , �}, � ∈ {1, . . . , ���}, � ∈
{1, . . . , ��
}}.  

For the type of descriptors used and for details about the classifier used in our experiments, see Section 

 4. Note that there are ∑ �����
#�*"  positive examples, while there is a quadratic number 

∑ ∑ �����
#�*",�+ �  #�*"  of negative examples. We do not use all the negative examples but show that 

even a fraction of them significantly contribute to the success of the algorithms. See Section  3.2.2 and 

Section  4.3. 



3.1.2 The Classification/Decision Stage

The Input:  

• A set {�,,�� |� = 1, . . . , �,�} of vectors describing a person's track a

• A set {�-,	
 |� = 1, . . . , �-
} of vectors describing a person's track as captured by camera 

The Decision: Apply the trained classifier on each of the concatenations 

1, . . . , �-
. In our experiments we use an SVM as the classifier and output the average of the decision 

values: let .�,	 , � = 1, . . . , �,�, �
algorithm returns the mean / =
algorithm returns / = . where 

concatenation [�,�||�-
]. 
The classification stage is illustrated in 

Figure 2: Illustration of the classification process used in the proposed algorithm. From each of the instances captured by

cameras A and B, features are extracted (F). Then the concatenation of those two feature vectors, 

to the classifier 01. 
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3.2 Algorithm Discussion 

3.2.1 The Concatenation Technique as a Method for Modeling Binary Relations 

If each person had one possible captured appearance for each camera, there would have be a function 

transforming a person's appearance in camera � to that same person's appearance in camera 
, 

=": ?@ → ?@ where d is the descriptor vector’s dimensions. If ���  was person �'s one possible 

appearance in camera � and ��
 was person �'s only possible appearance in camera B, then ="�����  =
��
. However, this is not the case, as each person has multiple possible appearances in each camera. 

Therefore, a single-value function cannot model the domain of all possible transformations. A multi-

valued function, or a binary relation, =B: ?@ × ?@ → {0,1}, is a more appropriate model: 

=B(��,�� , ��,	
) = E1, � = �
0, � ≠ �F 

This is actually what our vector concatenation based method does. The domain of transformations is 

represented as a mapping from concatenated examples of the transformation's input and output to a 

binary classification. We believe that this interpretation is fundamentally new and is an important 

contribution of this project. 

3.2.2 The Role of Negative Examples 

As mentioned above, the number of negative examples that can be used for training is quadratic in the 

number of positive examples. Using all the negative examples can lead to a strong bias and is 

computationally expensive. Do we need all the negative examples? Do we need negative examples at 

all? In our experiments (Section  4.3) we tested the contribution of the negative examples by checking 

the algorithm's performance as a function of the number of negative examples used for training. We 

also tested the possibility of ignoring all negative examples and using instead a one-class SVM trained 

only from positive examples. We learned that (a) not all negative examples are essential and training 

time can be saved by selecting only some of them; (b) the negative examples play an important role in 

compensating for the usually small number of positive examples, by helping in defining the borders of 

the "cloud" formed by the positive transformations. 

4 Experiments 

4.1 Implementation details 

4.1.1 Features 

We use a common and simple description of bounding boxes surrounding the people: each bounding 

box is divided into five horizontal stripes. Each stripe is described by a histogram with 10 bins for each of 

the color components H, S, and V. This results in feature vectors with 150 dimensions. We did not focus 

on finding optimal features. Any alternative descriptors can be easily used as well, and may further 

improve the algorithm's performance. 



4.1.2 Classifiers 

We use an RBF kernel binary SVM classifier in both algorithms as the classifier for the concatenated 

vectors. In one of our experiments below we test the use of a one-class-SVM also with an RBF kernel. 

For the above we used LibSVM [4]. Since many experiments had to be performed, we also implemented 

a custom classification routine which outperforms LibSVM. The routine was implemented in the C 

programming language, exporting a MATLAB MEX interface. Unlike LibSVM, our routine doesn't use 

sparse vectors, thus accelerating the classification stage. 

4.1.3 Evaluation Methods 

In the preliminary experiments described in Section  4.2 we used confusion tables and the Normalized 

Area Under Curve (nAUC) statistic of the Receiver Operating Characteristic (ROC) curve. An ROC curve is 

a graphical plot of the true positive rate versus the false positive rate for a binary classifier system as its 

discrimination threshold is varied. The machine learning community often uses the ROC nAUC statistic 

for model comparison. 

In the experiments described in Section  4.3, and  4.4, we compute and compare average Cumulative 

Match Characteristic (CMC) curves. This is the most widely accepted way to evaluate re-identification 

algorithms. For each person in the test set, each algorithm ranks the matching of his or her appearance 

in camera A with the appearances of all the people in the test set in camera B. The CMC curve 

summarizes the statistics of the ranks of the true matches. That is, a point (G, H) on the CMC curve (G is 

located on the horizontal axis) means that in H percent of the re-identification attempts the correct 

person appeared within the best G results. For quantitative comparison we use the measure G���(�), 

which denotes the percentage of true matches found within the first i ranked instances, the CMC-

expectation measure, which is the mean rank of the true match, and the nAUC. 

4.1.4 VIPeR dataset 

In our first set of experiments we use the VIPeR dataset, the most commonly used dataset for evaluating 

re-identification methods. It contains 632 pedestrian image pairs. Each pair contains two images of the 

same individual seen from different viewpoints by two cameras. See examples in Figure 1(a). 

4.2 Feasibility Tests 

In this preliminary set of experiments we aimed at exploring whether concatenating feature vectors and 

using an SVM classifier could potentially yield competitive results. 

In the first experiment we tested the performance of an SVM classifier to correctly identify positive and 

negative examples by using its binary output. I.e. Let us denote the real valued decision value of the 

classifier by v. Then, I�J�(K) ∈ {±1} was used to determine whether the classified pair belongs to a 

positive or to a negative example. Note that in this stage of the research we had not treated the 

problem as a ranking problem. In this experiment, both the disjoint training and the testing sets 

contained a single randomly-selected negative example per a positive example. We performed a 5-fold 

cross-validation on the VIPeR dataset, repeating this procedure for 100 times and averaging the results. 

The results of this experiment are shown in Table 1 below. 



Truth \ Prediction Negative(%) Positive(%) 

Negative 78.4304 21.5696 

Positive 14.9699 85.0301 
Table 1: The confusion table resulting from the first experiment performed on the VIPeR dataset. 

We noticed that if two or more negative examples are given to the SVM per a positive example, the SVM 

classifies the whole training set as negative. This bias is due to the SVM learning the prior probability of 

an example to belong to a class. 

To eliminate the aforementioned bias, we decided to use the probabilistic output of the SVM and treat 

the problem as a detection problem. We plotted the nAUC values as a function of the number of 

negative examples selected per a single positive example. On the same graph we plotted the time it 

takes to perform the whole experiment in hours. In this setup, the experiment time included both the 

training and the testing stages. We made 4 random selections of the negative examples and averaged 

the results. We decided to decrease the number of repetitions from 100 to 4 because of run-time 

considerations. We conducted 5-fold cross-validations. The number of negative examples was set for 

both the training and the testing sets. 

The results of this experiment are shown in Figure 3 below. 

 

Figure 3: The effect of altering the number of negative samples on AUC and experiment time. 
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Figure 3 shows that increasing the number of negative examples doesn’t yield a significant increase in 

the nAUC from a certain stage. The experiment time does keep rising. 

4.3 How Many Negative Examples to Use? 

  
(a) (b) 

Figure 4: (a) ICT's performance on the VIPeR dataset as a function of M, the number of negative examples per single positive 

example, measured by the CMC expectation, the training time, and the support-vectors used by the SVM. (b) CMC curves 

comparing ICT's results on VIPeR with recent state-of-the-art reported in [2], [3], [5], [6], and [7]. 

Following the feasibility tests described above, we conducted a rigorous study using standardized 

metrics to demonstrate the effect of altering the number of negative examples. 

In this set of experiments we use the VIPeR dataset. We perform a 2-fold cross-validation, dividing the 

632 pedestrians into equal-size training and test sets. We repeat this process four times with different 

random choices for the sets. The number of positive examples available for training is N = 316 (one 

concatenated pair for each person). We test the performance of ICT for different numbers of negative 

examples Q = RN, where R = 1,3,5,7,9,11,13,15,20,30. That is, per a positive example associated with 

person �, R of the Q − 1 negative examples involving person �'s appearance in camera A, are randomly 

selected. Each training involves a parameter learning stage: we learn the optimal X  and Y parameters 

for the RBF SVM by a 4-fold cross-validation inside the training set, searching for the parameters that 

result in the lowest CMC-expectation. 

See Figure 4(a) for ICT's performance as a function of R. It reports the CMC expectation, the training 

time, and the number of support vectors found by the SVM. We see that the expectation drops as R  

increases, at a high slope for small R's and at an almost zero slope for R > 15. We also see a similar 

convergence in the number of support vectors, which means that adding more than a certain number of 

negative examples does not add information to the model. Note that the computation time for training 

grows linearly with R. Thus in our experiments we set R = 30, which gives CMC-expectation of 15.9 and 

G���(1) of 15.1. 

We also tested a variation of the algorithm that learns only from positive examples using one-class-SVM 

(i.e, R = 0). The one-class SVM test, which followed a similar procedure, yields a CMC expectation value 



of 45.6 and G���(1) of 5.9. The conclusion is, obviously, that the negative examples play an important 

role in modeling the domain of the positive transfers. 

4.4 Comparing to State-of-the-Art on VIPeR 

See Figure 4(b) for a comparison of ICT's performance on the VIPeR dataset with the results of recent 

work. The results of the ELF [2] and the SDALF [6] algorithms were kindly provided by the authors of [6]. 

The results of PRDC were kindly provided by the authors of [7]. The results of the PS based algorithm 

were kindly provided by the authors of [5]. The results of PRSVM are those presented in [3]. See Table 2 

for a comparison of the CMC expectation, G���(1), G���(10), G���(20), and nAUC of the different 

methods. The CMC-expectation and the nAUC are much better for ICT than for all previous methods. ICT 

does not achieve the best G���(1) performance, but performs best for all ranks 8 and up. Note that the 

first ranks may not be so relevant in the surveillance context. Most scenes include much less than 316 

people. 

Method Expectation G���(1) G���(10) G���(20) nAUC 

SDALF 25.5 19.9 49.4 65.7 92.2 

ELF 28.9 12 44 61 91.2 

PS 21.2 21.8 57.2 71.2 93.6 

PRDC 21.5 15.7 53.9 70.1 93.5 

PRSVM 27.9 14.6 50.9 66.8 91.4 

ICT 15.9 15.1 59.8 77.6 95.3 
Table 2: Results of ICT on the VIPeR dataset compared to the models in [2], [3], [5], [6], and [7]. 

4.5 Experiments on the video from Rafael 

As a part of our cooperation with the Magnet-Vulcan consortium we were provided with two annotated 

video files that were taken by two cameras positioned outdoors by Rafael. There are 5 people that 

appear in these videos. Every person has 12-250 annotated instances in every video. We used a simple 

automatic heuristic to filter partially occluded instances. We included only instances whose bounding 

boxes were larger than 65x14 pixels. See examples of frames in Figure 5 and examples of bounding 

boxes containing people in Figure 1(b). 

  
Camera A Camera B 

Figure 5: Examples of frames taken from the two video files from Rafael. 

Three people are selected as the training set and the other two as the test set. We evaluated all 10 

possible options for such a partition. 



4.5.1 The Training Stage 

For the purpose of building positive examples, we choose 20 instances of every person from camera A, 

and 20 instances from camera B. If not enough instances are available, we choose with repetitions. 

Positive examples are built by random coupling that creates 20 pairs. 

Negative examples are chosen by randomly selecting 7 ⋅ 20 instances for every person that are 

concatenated with 7 ⋅ 20 instances of each of the other people in training set. 

4.5.2 The Classification/Decision Stage 

For every person in the training set, 20 randomly selected instances are chosen per camera. Then 

400 = 20B concatenations are created to represent correct matches (positive examples) for person 1 

appearing on camera � and the same person 1 appearing on camera 
. We shall denote this set of 

concatenations ]"". Similarly, a set of incorrect matches ]"B (person 1 on camera A and person 2 on 

camera B), incorrect matches ]B", and correct matches ]BB are created. Each set contains 400 

concatenations. 

The we apply the algorithm described in Section  3.1.2 on every set ]"", ]"B, ]B", ]BB, and the outputs 

of the algorithms are /"", /"B, /B", /BB, respectively. A match is considered successful if /"" ⋅ /BB >
/"B ⋅ /B" holds. The meaning of such a success is that if two people (1 and 2) appeared on camera A and 

after a while appeared on camera B, the algorithm would know how to re-identify them correctly. 

Meaning that person 1 would still be identified as person 1 and person 2 would still be identified as 

person 2. 

4.5.3 Results 

The algorithm succeeded for all 10 possible partitioning options. 

5 Future Work – Transitive Re-Identification 

We believe that the method presented in this project can be extended to work in a transitive setup. 

Namely, in a setup with three cameras – A, B and C, where we are given a set of examples of individuals 

appearing on cameras A and B, and another set of such examples of individuals appearing on cameras B 

and C. No such examples need to be available for cameras A and C. We believe that it would be possible 

to learn implicit transfer functions from A to B and from B to C and to be able to use them to model the 

transfer from A to C. 

A further extension would include re-identification in a network of cameras. Given an undirected 

connected graph of cameras ^ = (�, _), where the vertices � represent cameras and the edges _  

represent the availability of examples between the vertices of an edge, we will be able to model the 

transfer from any vertex `�  to any other vertex �̀ on the graph. Note that the edge (`� − �̀) need not 

exist as long as there is a path N = (`� − ⋯ − �̀) available. This would be extremely useful because 

inter-camera examples are hard to acquire, but a connected graph formed by these examples would 

allow re-identification in the whole network. 



5.1 The First Proposed Method - Marginalization 

At the classification stage we should have two binary SVM models available. One for transferring from � 

to 
, and another for transferring from 
 to X. These models should contain probability information. 

Thus, it would be possible to compute the posteriors N(/�
|b�, b
) and N(/
c|b
, bc). Where 

b�, b
 , bc are the feature vectors describing individuals on the cameras, and /�
 , /
c ∈ {+1, −1} are 

the events of b�, b
 (and b
 , bc) being the same/not-same individuals. 

5.1.1 Modeling the Distribution of Feature Vectors on Camera B 

We will model the distribution of the features vectors on camera 
 by training a one-class SVM using 

feature vectors of images acquired from this camera only. Note that concatenated feature vectors are 

not used here. The SVM should be trained with single feature vectors, each representing a person. After 

training the SVM using the training set, we will classify the same training set by the one-class SVM to 

build a histogram of decision values. We believe that the decision values will be distributed normally. 

This is based on [8], where this phenomenon is observed, supported by empirical evidence and derived 

using central limit theorems. At this stage we will be able to compute the decision values’ mean and 

standard deviation to build a parametric (normal) model of their distribution. 

More formally, let K(e) denote the decision value output of the SVM which is defined by 

K(e) = Σ�.�g��(e� , e) 

where e is the feature vector of an individual on camera B, e� are the support vectors, .�are the labels of 

the support vectors and g� are the coefficients of the support vectors. Our assumption is when treating 

K(e) as a random variable, K(e)~Q(i, jB) and that the parameters of the distribution can be found by 

performing maximum likelihood estimation (MLE) on the training set. 

5.1.2 The Classification Stage 

Given the feature vectors b�, bc calculated from images taken by cameras A and C respectively, we 

would like to compute N(I��k|b�, bc) which is the probability that both feature vectors represent the 

same individual. We can also treat this as a ranking problem by comparing the probabilities of two 

candidates bcl bcm. E.g.  

N�/�c = 1�b� = e�, bc = enl� >? N�/�c = 1�b� = e�, bc = enm� 

We can use marginalization to compute: 

N(/�c = 1|b� = e�, bc = ec) = p N(/�
 = 1, /
c = 1|b� = e�, b
 = e
 , bc = ec) ⋅ =q5(K(e
))re
s5
 

Where =q5 (∙) is the normal probability density function (PDF), estimated previously. Note that this 

function’s argument is the decision value of the one-class SVM. The events /�
 , /
c  are independent, 

and we get: 

= p N(/�
 = 1|b� = e�, b
 = e
) ⋅ N(/
c = 1|b
 = e
 , bc = ec) ⋅ =q5(K(e
))re
s5
 



The two first terms of the integrand are the posteriors computed by the binary SVM, as described in [9]. 

These posteriors are sigmoids as functions of the decision values of the binary SVMs. This integral 

cannot be solved analytically. Thus, we should turn to numerical methods such as Metropolis-Hastings 

or other Markov-Chain-Monte-Carlo (MCMC) algorithms to compute it. 

5.2 The Second Proposed Method – Global Search 

Another possible method to re-identify is to search for the feature vector e
 that yields the maximal 

value of the product of the first two terms in the integrand that appears in the previous section. More 

formally, 

maxxy N(/�
 = 1|b� = e�, b
 = e
) ⋅ N(/
c = 1|b
 = e
 , bc = ec)  

I. z. �e
({)� = 1, �e
(|)� = 1, �e
(})� = 1  

The constraints restrict the feature vector to be a valid normalized HSV color histogram. 

The objective function is not convex, thus global numeric search methods (such as simulated-annealing, 

combined with gradient-descent) should be used. 

6 Summary 

This project considers the re-identification task and proposes three main contributions: 1. The 

observation that the transfer between two cameras is a multi-valued mapping which can be estimated 

using implicit function learning. 2. A re-identification algorithm which models the transformation 

between the cameras. We show that incorporating a large number of negative examples can 

compensate for the usually low number of manually annotated positive examples. The algorithm yields 

an extremely fast classifier. We present new state-of-the-art re-identification performance. 3. We 

propose a new direction for research to enable transitive re-identification and re-identification in a 

network of cameras, based on the proposed algorithm. 
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